2 Four fundamental subspaces

1. Show that the range of every linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m , and show that every subspace of \mathbb{R}^m is the range of some linear function.

2. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ denote a given matrix. Show that following two claims hold. (i) $\operatorname{im}(A) =$ the space spanned by the columns of A (column space). (ii) $\operatorname{im}(A^{\top}) =$ the space spanned by the rows of A (row space).

Subspaces and Linear Functions For a linear function f mapping \mathbb{R}^n into \mathbb{R}^m , let $\operatorname{im}(f)$ denote the *range* of f. That is, $\operatorname{im}(f) = \{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$ is the set of all "images" as \boldsymbol{x} varies freely over \mathbb{R}^n .

The range of every linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m , and every subspace of \mathbb{R}^m is the range of some linear function.

For this reason, subspaces of \mathbb{R}^m are sometimes called *linear spaces*.

Range Spaces

The <u>range of a matrix</u> $A \in Mat_{m \times n}(\mathbb{R})$ is defined to be the subspace im(A) of \mathbb{R}^m that is generated by the range of $f(\mathbf{x}) = A\mathbf{x}$. That is,

 $\operatorname{im}(A) = \{A\boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m.$

Similarly, the range of A^{\top} is the subspace of \mathbb{R}^n defined by

$$\operatorname{im}(A^{\top}) = \{A^{\top} \boldsymbol{y} \,|\, \boldsymbol{y} \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

Because im(A) is the set of all "images" of vectors $\boldsymbol{x} \in \mathbb{R}^m$ under transformation by A, some people call im(A) the *image space* of A.

Column and Row Spaces For $A \in Mat_{m \times n}(\mathbb{R})$, the following statements are true. • im(A) = the space spanned by the columns of A (column space).

• $im(A^{\top})$ = the space spanned by the rows of A (row space).

• $\boldsymbol{b} \in \operatorname{im}(A) \Leftrightarrow \boldsymbol{b} = A\boldsymbol{x}$ for some \boldsymbol{x} .

• $\boldsymbol{a} \in \operatorname{im}(A^{\top}) \Leftrightarrow \boldsymbol{a}^{\top} = \boldsymbol{y}^{\top}A$ for some \boldsymbol{y}^{\top} .

3. Describe $\operatorname{im}(A)$ and $\operatorname{im}(A^{\top})$ for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$.

4. Show that for any two matrices A and B of the same shape the following (i), (ii) hold. (i) $\operatorname{im}(A^{\top}) = \operatorname{im}(B^{\top})$ if and only if $A \stackrel{\text{row}}{\sim} B$. (ii) $\operatorname{im}(A) = \operatorname{im}(B)$ if and only if $A \stackrel{\text{col}}{\sim} B$.

Equal Ranges For two matrices A and B of the same shape: • $\operatorname{im}(A^{\top}) = \operatorname{im}(B^{\top})$ if and only if $A \stackrel{\operatorname{row}}{\sim} B$. • $\operatorname{im}(A) = \operatorname{im}(B)$ if and only if $A \stackrel{\operatorname{col}}{\sim} B$.

5. Determine whether or not the following sets span the same subspace

$$\mathcal{A} = \left\{ \begin{pmatrix} 1\\2\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\4\\1\\3 \end{pmatrix}, \begin{pmatrix} 3\\6\\1\\4 \end{pmatrix} \right\}, \quad \mathcal{B} = \left\{ \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \right\}.$$

Spanning the Row Space and Range Let A be an $m \times n$, matrix, and let U be any row echelon form derived from A. Spanning sets for the row and column spaces are as follows:

• The nonzero rows of U span $\operatorname{im}(A^{\top})$.

• The basic columns in A span im(A).

6. Determine spanning sets for im(A) and $im(A^{\top})$, where $A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix}$.

Nullspace • For an $m \times n$ matrix A, the set $\overline{\ker(A)} = \{x \mid Ax = 0\} \subseteq \mathbb{R}^n$ is called the *nullspace* (or *kernel*) of A. In other words, ker(A) is simply the set of all solutions to the homogeneous system $Ax = \mathbf{0}$.

 \bullet The set

$$\ker(A^{\top}) = \{ \boldsymbol{y} \, | \, A^{\top} \boldsymbol{y} = 0 \} \subseteq \mathbb{R}^m$$

is called the <u>lefthand nullspace</u> of A because $\ker(A^{\top})$ is the set of all solutions to the left-hand homogeneous system $\boldsymbol{y}^{\top}A = \boldsymbol{0}^{\top}$.

Spanning the Nullspace To determine a spanning set for ker(A), where rank $(A_{m \times n}) = r$, row reduce A to a row echelon form U, and solve $U\mathbf{x} = \mathbf{0}$ for the basic variables in terms of the free variables to produce the general solution of $A\mathbf{x} = \mathbf{0}$ in the form

$$x = x_{f_1}h_1 + x_{f_2}h_2 + \dots + x_{f_{n-r}}h_{n-r}.$$

By definition, the set $\mathcal{H} = \{h_1, h_2, ..., h_{n-r}\}$ spans ker(A). Moreover, it can be proven that \mathcal{H} is unique in the sense that \mathcal{H} is independent of the row echelon form U.

7. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and consider a linear system of equations $A\boldsymbol{x} = \boldsymbol{b}$. (a) Explain why $A\boldsymbol{x} = \boldsymbol{b}$ is consistent if and only if $b \in im(A)$. (b) Explain why a consistent system Ax = b has a unique solution if and only if $ker(A) = \{0\}$.

8. Suppose that $A \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$ such that

$$\mathcal{R} = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \right\}, \quad \text{and} \quad \mathcal{N} = \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix} \right\}$$

span im(A) and ker(A), respectively, and consider a linear system $A\boldsymbol{x} = \boldsymbol{b}$, where $\boldsymbol{b} = (1, -7, 0)^{\top}$. (a) Explain why $A\boldsymbol{x} = \boldsymbol{b}$ must be consistent. (b)

Explain why $A\mathbf{x} = \mathbf{b}$ cannot have a unique solution.

9. If
$$A = \begin{bmatrix} -1 & 1 & 1 & -2 & 1 \\ -1 & 0 & 3 & -4 & 2 \\ -1 & 0 & 3 & -5 & 3 \\ -1 & 0 & 3 & -6 & 4 \\ -1 & 0 & 3 & -6 & 4 \end{bmatrix}$$
 and $A = \begin{bmatrix} -2 \\ -5 \\ -6 \\ -7 \\ -7 \end{bmatrix}$ is $h \in \operatorname{im}(A)$?

 $b \in \operatorname{im}(A)$?

10. Suppose that $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. (a) If $im(A) = \mathbb{R}^n$, explain why A must be nonsingular. (b) If A is nonsingular, describe its four fundamental subspaces.

11. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$. Show that $\ker(A) = \{\mathbf{0}\}$ if and only if $\operatorname{rank}(A) = n$.

Zero Nullspace If A is an $m \times n$ matrix, then • $\ker(A) = \{\mathbf{0}\}$ if and only if $\operatorname{rank}(A) = n$. • $\ker(A^{\top}) = \{\mathbf{0}\}$ if and only if $\operatorname{rank}(A) = m$.

Left-Hand Nullspace If $rank(A_{m \times n}) = r$, and if PA = U, where P is nonsingular and U is in row echelon form, then the last m - r rows in P span the left-hand nullspace of A. In other words, if $P = \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$, where P_2 is $(m - r) \times m$, then $\ker(A^{\top}) = \operatorname{im}(P_2^{\top}).$

Equal Nullspaces For two matrices A and B of the same shape:

• $\ker(A) = \ker(B)$ if and only if $A \stackrel{red}{\sim} B$. • $\ker(A^{\top}) = \ker(B^{\top})$ if and only if $A \stackrel{kol}{\sim} B$.

12. Determine a spanning set for ker(A), where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}.$

13. Consider the matrices $A = \begin{bmatrix} 1 & 1 & 5 \\ 2 & 0 & 6 \\ 1 & 2 & 7 \end{bmatrix}$ and

 $B = \begin{bmatrix} 1 & -4 & 4 \\ 4 & -8 & 6 \\ 0 & -4 & 5 \end{bmatrix}$. (a) Do A and B have the same

row space? (b) Do A and B have the same column space? (c) Do A and B have the same nullspace? (d) Do A and B have the same left-hand nullspace?

14. Determine a spanning set for ker(A^{\top}), where $A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix}.$

15. Suppose rank $(A_{m \times n}) = r$, and let $P = \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$, be a nonsingular matrix such that $PA = U = \begin{pmatrix} C_{r \times n} \\ \mathbf{0} \end{pmatrix}$, where U is in row echelon form. Prove

$$\operatorname{im}(A) = \ker(P_2).$$

16. Let $(4,3,2,1)^{\top} \in \mathbb{R}^4$ be a given vector and let $A = \begin{bmatrix} a & -1 & 0 & 0 \\ a & b & -1 & 0 \\ a & 0 & b & -1 \\ a & 0 & 0 & b \end{bmatrix}$ denote a given matrix.

Discus (and carefully explain) for which values of parameters a and b we have $(4, 3, 2, 1)^{\top} \in im(A)$.

17. Consider vector subspace of \mathbb{R}^4 spanned by vectors $x_1 = (-1, 0, 1, 2)^{\top}$, $x_2 = (1, 2, -3, 5)^{\top}$ and $x_3 = (1, 4, 0, 9)^{\top}$. Find system of homogeneous linear equations for which space of solution is exactly subspace of \mathbb{R}^n spanned by above three given vectors.

18. Explain is the set, which contains columns of matrix A, linearly independent set, if we have that

	[7	3	0	 0	[0
A =	2	7	3	 0	0
	0	2	7	 0	0
	:	÷	÷	÷	:
	0	0	0	 7	3
	0	0	0	 2	$7 \rfloor_{n \times n}$

(solve the problem without computing det(A)). Is the matrix A a singular matrix? (Recall: square matrix with no inverse is called a singular matrix.)

19. Find for which value of unknown x will vector $(0, 1, 1, 4)^{\top} \in \mathbb{R}^4$ belong to $\operatorname{im}(A)$ if

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1-x & 1 & 1 & 1 \\ 0 & 1-x & 1 & 1 \\ 0 & 0 & 1-x & 1 \end{bmatrix}.$$

InC: 2, 5, 7, 8, 10, 13, 14. HW: 16, 17, 18, 19.