2 Four fundamental subspaces

1. Show that the range of every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a subspace of \mathbb{R}^{m}, and show that every subspace of \mathbb{R}^{m} is the range of some linear function.
2. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ denote a given matrix. Show that following two claims hold. (i) im $(A)=$ the space spanned by the columns of A (column space). (ii) $\mathrm{im}\left(A^{\top}\right)=$ the space spanned by the rows of A (row space).

Subspaces and Linear Functions For a linear function f mapping \mathbb{R}^{n} into \mathbb{R}^{m}, let $\operatorname{im}(f)$ denote the range of f. That is, $\operatorname{im}(f)=\left\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq$ \mathbb{R}^{m} is the set of all "images" as \boldsymbol{x} varies freely over \mathbb{R}^{n}.
The range of every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a subspace of \mathbb{R}^{m}, and every subspace of \mathbb{R}^{m} is the range of some linear function.
For this reason, subspaces of \mathbb{R}^{m} are sometimes called linear spaces.

Range Spaces

The range of a matrix $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ is defined to be the subspace $\operatorname{im}(A)$ of \mathbb{R}^{m} that is generated by the range of $f(\boldsymbol{x})=A \boldsymbol{x}$. That is,

$$
\operatorname{im}(A)=\left\{A \boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m} .
$$

Similarly, the range of A^{\top} is the subspace of \mathbb{R}^{n} defined by

$$
\operatorname{im}\left(A^{\top}\right)=\left\{A^{\top} \boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{R}^{m}\right\} \subseteq \mathbb{R}^{n}
$$

Because $\operatorname{im}(A)$ is the set of all "images" of vectors $\boldsymbol{x} \in \mathbb{R}^{m}$ under transformation by A, some people call $\operatorname{im}(A)$ the image space of A.

Column and Row Spaces For $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$, the following statements are true.

- $\operatorname{im}(A)=$ the space spanned by the columns of A (column space).
- $\operatorname{im}\left(A^{\top}\right)=$ the space spanned by the rows of A (row space).
- $\boldsymbol{b} \in \operatorname{im}(A) \Leftrightarrow \boldsymbol{b}=A \boldsymbol{x}$ for some \boldsymbol{x}.
- $\boldsymbol{a} \in \operatorname{im}\left(A^{\top}\right) \Leftrightarrow \boldsymbol{a}^{\top}=\boldsymbol{y}^{\top} A$ for some \boldsymbol{y}^{\top}.

3. Describe $\operatorname{im}(A)$ and $\operatorname{im}\left(A^{\top}\right)$ for $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$.
4. Show that for any two matrices A and B of the same shape the following (i), (ii) hold. (i) $\operatorname{im}\left(A^{\top}\right)=\operatorname{im}\left(B^{\top}\right)$ if and only if $A \stackrel{\text { row }}{\sim} B$. (ii) $\operatorname{im}(A)=\operatorname{im}(B)$ if and only if $A \stackrel{\text { col }}{\sim} B$.

Equal Ranges For two matrices A and B of the same shape:

- $\operatorname{im}\left(A^{\top}\right)=\operatorname{im}\left(B^{\top}\right)$ if and only if $A \stackrel{\text { row }}{\sim} B$.
- $\operatorname{im}(A)=\operatorname{im}(B)$ if and only if $A \stackrel{\text { col }}{\sim} B$.

5. Determine whether or not the following sets span the same subspace
$\mathcal{A}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 4 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 6 \\ 1 \\ 4\end{array}\right)\right\}, \quad \mathcal{B}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)\right\}$.

Spanning the Row Space and Range Let A

 be an $m \times n$, matrix, and let U be any row echelon form derived from A. Spanning sets for the row and column spaces are as follows:- The nonzero rows of U span $\operatorname{im}\left(A^{\top}\right)$.
- The basic columns in A span im (A).

6. Determine spanning sets for $\operatorname{im}(A)$ and
$\operatorname{im}\left(A^{\top}\right)$, where $A=\left[\begin{array}{llll}1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4\end{array}\right]$.
Nullspace - For an $m \times n$ matrix A, the set $\overline{\operatorname{ker}(A)=\{\boldsymbol{x}} \mid A \boldsymbol{x}=0\} \subseteq \mathbb{R}^{n}$ is called the nullspace (or kernel) of A. In other words, $\operatorname{ker}(A)$ is simply the set of all solutions to the homogeneous system $A \boldsymbol{x}=\mathbf{0}$.

- The set

$$
\operatorname{ker}\left(A^{\top}\right)=\left\{\boldsymbol{y} \mid A^{\top} \boldsymbol{y}=0\right\} \subseteq \mathbb{R}^{m}
$$

is called the lefthand nullspace of A because $\operatorname{ker}\left(A^{\top}\right)$ is the set of all solutions to the left-hand homogeneous system $\boldsymbol{y}^{\top} A=\mathbf{0}^{\top}$.

Spanning the Nullspace To determine a spanning set for $\operatorname{ker}(A)$, where $\operatorname{rank}\left(A_{m \times n}\right)=r$, row reduce A to a row echelon form U, and solve $U \boldsymbol{x}=\mathbf{0}$ for the basic variables in terms of the free variables to produce the general solution of $A \boldsymbol{x}=\mathbf{0}$ in the form

$$
\boldsymbol{x}=x_{f_{1}} \boldsymbol{h}_{1}+x_{f_{2}} \boldsymbol{h}_{2}+\ldots+x_{f_{n-r}} \boldsymbol{h}_{n-r} .
$$

By definition, the set $\mathcal{H}=\left\{\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{n-r}\right\}$ spans $\operatorname{ker}(A)$. Moreover, it can be proven that \mathcal{H} is unique in the sense that \mathcal{H} is independent of the row echelon form U.
7. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and consider a linear system of equations $A \boldsymbol{x}=\boldsymbol{b}$. (a) Explain why $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if $b \in \operatorname{im}(A)$. (b) Explain why a consistent system $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution if and only if $\operatorname{ker}(A)=\{\mathbf{0}\}$.
8. Suppose that $A \in \operatorname{Mat}_{3 \times 3}(\mathbb{R})$ such that
$\mathcal{R}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)\right\}, \quad$ and $\quad \mathcal{N}=\left\{\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)\right\}$
span $\operatorname{im}(A)$ and $\operatorname{ker}(A)$, respectively, and consider a linear system $A \boldsymbol{x}=\boldsymbol{b}$, where $b=(1,-7,0)^{\top}$. (a) Explain why $A \boldsymbol{x}=\boldsymbol{b}$ must be consistent. (b)
Explain why $A \boldsymbol{x}=\boldsymbol{b}$ cannot have a unique solution.
9. If $A=\left[\begin{array}{lllll}-1 & 1 & 1 & -2 & 1 \\ -1 & 0 & 3 & -4 & 2 \\ -1 & 0 & 3 & -5 & 3 \\ -1 & 0 & 3 & -6 & 4 \\ -1 & 0 & 3 & -6 & 4\end{array}\right]$ and $A=\left[\begin{array}{c}-2 \\ -5 \\ -6 \\ -7 \\ -7\end{array}\right]$ is $b \in \operatorname{im}(A)$?
10. Suppose that $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. (a) If $\operatorname{im}(A)=\mathbb{R}^{n}$, explain why A must be nonsingular.
(b) If A is nonsingular, describe its four fundamental subspaces.
11. Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$. Show that $\operatorname{ker}(A)=\{\mathbf{0}\}$ if and only if $\operatorname{rank}(A)=n$.

Zero Nullspace If A is an $m \times n$ matrix, then

- $\operatorname{ker}(A)=\{0\}$ if and only if $\operatorname{rank}(A)=n$.
- $\operatorname{ker}\left(A^{\top}\right)=\{\mathbf{0}\}$ if and only if $\operatorname{rank}(A)=m$.

Left-Hand Nullspace If $\operatorname{rank}\left(A_{m \times n}\right)=r$, and if $P A=U$, where P is nonsingular and U is in row echelon form, then the last $m-r$ rows in P span the left-hand nullspace of A. In other words, if $P=\binom{P_{1}}{P_{2}}$, where P_{2} is $(m-r) \times m$, then

$$
\operatorname{ker}\left(A^{\top}\right)=\operatorname{im}\left(P_{2}^{\top}\right) .
$$

Equal Nullspaces For two matrices A and B of the same shape:

- $\operatorname{ker}(A)=\operatorname{ker}(B)$ if and only if $A \stackrel{\text { red }}{\sim} B$.
- $\operatorname{ker}\left(A^{\top}\right)=\operatorname{ker}\left(B^{\top}\right)$ if and only if $A \stackrel{\text { kol }}{\sim} B$.

12. Determine a spanning set for $\operatorname{ker}(A)$, where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$.
13. Consider the matrices $A=\left[\begin{array}{lll}1 & 1 & 5 \\ 2 & 0 & 6 \\ 1 & 2 & 7\end{array}\right]$ and
$B=\left[\begin{array}{lll}1 & -4 & 4 \\ 4 & -8 & 6 \\ 0 & -4 & 5\end{array}\right]$. (a) Do A and B have the same row space? (b) Do A and B have the same column space? (c) Do A and B have the same nullspace?
(d) Do A and B have the same left-hand nullspace?
14. Determine a spanning set for $\operatorname{ker}\left(A^{\top}\right)$, where
$A=\left[\begin{array}{llll}1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4\end{array}\right]$.
15. Suppose $\operatorname{rank}\left(A_{m \times n}\right)=r$, and let $P=\binom{P_{1}}{P_{2}}$, be a nonsingular matrix such that
$P A=U=\binom{C_{r \times n}}{\mathbf{0}}$, where U is in row echelon form. Prove

$$
\operatorname{im}(A)=\operatorname{ker}\left(P_{2}\right)
$$

16. Let $(4,3,2,1)^{\top} \in \mathbb{R}^{4}$ be a given vector and let
$A=\left[\begin{array}{cccc}a & -1 & 0 & 0 \\ a & b & -1 & 0 \\ a & 0 & b & -1 \\ a & 0 & 0 & b\end{array}\right]$ denote a given matrix.
Discus (and carefully explain) for which values of parameters a and b we have $(4,3,2,1)^{\top} \in \operatorname{im}(A)$.
17. Consider vector subspace of \mathbb{R}^{4} spanned by vectors $x_{1}=(-1,0,1,2)^{\top}, x_{2}=(1,2,-3,5)^{\top}$ and $x_{3}=(1,4,0,9)^{\top}$. Find system of homogeneous linear equations for which space of solution is exactly subspace of \mathbb{R}^{n} spanned by above three given vectors.
18. Explain is the set, which contains columns of matrix A, linearly independent set, if we have that

$$
A=\left[\begin{array}{cccccc}
7 & 3 & 0 & \ldots & 0 & 0 \\
2 & 7 & 3 & \ldots & 0 & 0 \\
0 & 2 & 7 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 7 & 3 \\
0 & 0 & 0 & \ldots & 2 & 7
\end{array}\right]_{n \times n}
$$

(solve the problem without computing $\operatorname{det}(A)$). Is the matrix A a singular matrix? (Recall: square matrix with no inverse is called a singular matrix.)
19. Find for which value of unknown x will vector $(0,1,1,4)^{\top} \in \mathbb{R}^{4}$ belong to $\operatorname{im}(A)$ if

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1-x & 1 & 1 & 1 \\
0 & 1-x & 1 & 1 \\
0 & 0 & 1-x & 1
\end{array}\right]
$$

InC: $2,5,7,8,10,13,14$. HW: 16, 17, 18, 19.

